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General optimization results from physics indicate that maximum
efficiency of a process, in the sense of minimum overall entropy
production, is achieved when the rate of entropy production is
constant over time, however not in ordinary clock time but on an,
in general varying, ‘‘eigen time’’ scale, intrinsic to the system. We
identify the eigen time of a biological system with ‘‘physiological
time,’’ which generally scales with the 1�4 power of body mass,
M1/4, over a vast range of species. Since it is equally well estab-
lished that metabolic rate scales as M3/4, it follows that organisms
produce entropy at the same intrinsic rate, fulfilling a necessary
condition for maximum efficiency, and are all, furthermore, equally
efficient on the physiological eigen time scale.

Maximum efficiency is an attractive design principle for
biological systems. It has been argued for on evolutionary

(1) as well as thermodynamic grounds (see e.g., refs. 2–4).
Recently there have been several attempts (5–8) to derive
general allometric scaling laws (9–11) from just such a principle
of maximum efficiency. According to these laws, empirically
valid over a vast range of species from microorganisms to the
largest mammals, various biological times (e.g., lifespan and the
time between heartbeats) scale with body mass to the 1�4 power,
and resting metabolic rate scales with body mass to the 3�4
power. Most of the arguments leading from maximum efficiency
to the scaling laws suffer, however, from internal inconsistencies,
a disregard for restrictive conditions on the validity of theoretical
results, or some other failing. A notable exception to this trend
is Bejan’s constructal design principle, which results in an
optimal geometric form for which dissipation turns out to scale
with the 3�4 power of size (8).

The traditional argument, recently (1, 5, 7) as well as in the
past (12), for maximum efficiency of biological systems rests on
the statement ‘‘. . . natural selection is responsible for . . . the
trend toward optimal efficiency in organisms’’ (1). It is evidently
obvious, then, that the organism with the highest efficiency is the
fittest. It is also tempting to argue (2–4, 13) that the classical
formulation of nonequilibrium thermodynamics of Onsager (14,
15) and Onsager and Machlup (16, 17) [although often attributed
to Prigogine and Wiame (18)] implies maximum efficiency.
These authors showed that in a certain class of non-equilibrium
stationary states, entropy production rate is at a minimum.
Because living systems are nonequilibrium systems, their sta-
tionary states are maximally efficient, or so it is argued.

All these arguments, however, are doomed to failure. (i)
Although the criticism that the ‘‘survival of the fittest’’ argument
is tautological may be argued to have been rebutted, there still
remain significant questions regarding the proper concept of
fitness [ref. 19; see R. L. Millstein (2001) http://philsci-
archive.pitt.edu�documents�disk0�00�00�02�10�PITT-PHIL-
SCI00000210–00�Millstein�Evolution3.pdf]. (ii) Onsager’s re-
sults are generally valid only in the linear near-equilibrium
regime, whereas the living state is far from equilibrium and
nonlinear (20–22). (iii) When it is argued on evolutionary
grounds that efficiency is maximum to derive the universal
biological allometric scaling laws (9, 10), the argument is typi-
cally applied to particular subsystems or processes of the organ-

ism, supply of materials to the organism (5), or hovering and
jumping (7), for example. However, when subsystems interact, an
optimal system does not imply that all subsystems are optimal;
indeed, in general it will not be possible to optimize all sub-
systems independently without encountering irreconcilable con-
tradictions. (iv) The very allometric scaling laws that are to be
derived on the basis of a principle of maximum efficiency predict
that loss (inefficiency), in the sense of the rate of energy usage
per unit body mass, decreases with increasing body mass (23).
One may then naively ask why the body mass of mammalian
species ranges over seven orders of magnitude? If maximum
efficiency is to be equated with fitness, then larger implies fitter,
and only the largest species should have survived.

Obviously, a new line of thought is required to reconcile the
biological facts. In this paper we turn the question around and
ask not whether we can derive the scaling laws from efficiency
considerations, but rather what these empirical scaling laws tell
us about efficiency. In this light the allometric scaling laws, as
seen below, imply a constant metabolic rate for organisms, not,
however, as seen on the time scale of an outside observer or
measured in seconds by some physical clock, but in what
Schmidt-Nielsen (10) has called ‘‘physiological time.’’ Note that
this new time scale is not simply a linear transformation to new
units, which would have made the exercise shallow. The new time
scale is variable and depends on the rate of the interior processes
of the organism. We argue here that physiological time is
equivalent to thermodynamic ‘‘eigen time’’ (24), or ‘‘intrinsic
time’’ if you wish, which is based on the instantaneous relaxation
time of the system itself. As a consequence, biological systems
fulfill a necessary condition for maximum efficiency in the sense
of minimum total entropy production, namely a constant rate of
entropy production, again not in clock time but in eigen time (24,
25). Furthermore, on the physiological eigen time scale, organ-
isms not only fulfill a necessary condition for maximum effi-
ciency, they are also all equally efficient.

Eigen Time
The general conditions necessary for maximum efficiency, in the
sense of minimum overall entropy production, in arbitrary
systems have recently been derived by Andresen and Gordon
(24) and Spirkl and Ries (25). Andresen and Gordon (24) used
the concept of thermodynamic geometry (26), whereas Spirkl
and Ries (25) used the calculus of variations. Both groups found
that in general these conditions depend on the detailed dynamics
of the system and that entropy production will be minimum for
only certain paths among all those available to the system. They
also found that if the dynamics of the system is such that the
relation between the generalized forces and the generalized rates
these forces drive is linear in the rates, then a necessary condition
for minimum total entropy production is that the rate of entropy
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production be constant (27). Note that even though this restric-
tion is severe and cannot be expected to be valid in general for
biological systems, it does not imply that one is operating in the
linear near-equilibrium regime, since nonlinearities may be
present in the dependence of the force–rate relation on the state
of the system.

The results just cited are for clock time; i.e., the rate of entropy
production is that seen by an observer outside the system. Andresen
and Gordon (24) went on to show that if the rates are normalized
to the intrinsic time scale of the system, based on its instantaneous
relaxation time (which may change with time as seen by an outside
observer) (28), then the restriction to linear force–rate dynamics no
longer applies, and the general necessary condition for minimum
overall entropy production is a constant rate of entropy production
on this intrinsic time scale, independent of any condition on
linearities or any other simplifying assumptions about the dynamics.
In other words, on the internal time scale of the system itself,
referred to as eigen time, equal time intervals produce equal
changes in entropy. Or put still another way, as the system perceives
itself, minimum entropy production requires a constant rate of
entropy production. This distinction between time as perceived by
an outside observer and as perceived by the system itself is not as
unusual as it may seem. It is well known in the theory of relativity
and is the basis of the twin paradox (see, e.g., refs. 29 and 30).

Let us consider a simple example to illustrate the concepts of
optimal path and eigen time, an ideal damped spring with spring
constant � and friction coefficient �. Ordinarily the spring would
obey the natural differential equation dx�dt � �(���)x. The
resulting position x and rate of entropy production � as function
of clock time t are then x � x0e�(�/�)t and � � �(dx�dt)2 �
(�2��)x0

2e�2(�/�)t. This natural path, however, is not the one
producing the least entropy (i.e., it is not optimal), and the
entropy production rate is not constant. The optimized path calls
for a constant speed v � dx�dt, which in turn implies a constant
rate of entropy production, � � �v2. Such an optimal path
requires an outside controlling agent to implement the required
x(t). For this system the eigen time � � t��, where � is the
instantaneous relaxation time of the system, is simply � � (���)t.

For more complicated systems � will vary along the path, and
correspondingly � will not be a linear function of t. A slight
variation of the example above, using a quadratic spring, yields
the differential equation dx�dt � �(���)x2 and thus the natural
time evolution x � 1�(1 � (���)t). Again, this is different from
the optimal path that requires a constant rate of entropy
production. For this system the eigen time is � � t�� � (�x��)t;
i.e., it dilates as x increases. Put another way, eigen time �
increases nonlinearly with clock time t: � � (���)t�(1 � (���)t).

Of course, the systems we are interested in are not described
by a single variable, but rather by many. Organisms will in
general have very large numbers of variables. Nonetheless, the
concept of eigen time is the same as that just illustrated. It is the
internal time scale of the system that leads to equal steps in
entropy for equal steps in (eigen) time.

Physiological Time
What is the proper eigen time for an organism, and what is the
rate of entropy production for the organism in this eigen time?
To answer these questions we turn to allometric scaling laws in
biological systems, which could be said to belong to the few well
established fundamental principles in biology (9–11). Over a
stupefying range of body masses M, from unicellular organisms
through blue whales, metabolic rate scales as M3/4, and charac-
teristic times scale as M1/4. Furthermore, the scaling laws appear
to be valid not only for animals but also for plants (31) as well
as ecosystems (32). There is overwhelming evidence that the
time between heartbeats, the time between respirations, the
gestation period, even species longevity, all scale as M1/4. This
scaling of essentially all natural periods with body weight is what

is called ‘‘physiological time,’’ a term coined by Schmidt-Nielsen
(10). Note that these scaling laws are not characteristics of an
individual organism at a particular instant of time. Rather, they
are of the nature of ensemble averages (over a species), and
usually taken under resting conditions.

The identical scalings of natural periods imply several con-
stants: the ratio of respiration frequency to heart rate, the ratio
of gestation time to longevity, the number of respirations or
heartbeats in a lifetime. Indeed, each species lives for roughly the
same number of heartbeats or respirations. Whereas each spe-
cies appears to be different when observed from the outside
(clock time), each species’ temporal view of itself is identical. It
sees each heart beat, each respiration as the same fraction of its
lifespan. Physiological time is thus the intrinsic, inherent time
scale of organisms. This is just what is intimated by the concept
of eigen time. From these observations we can infer that the
physiological time scale � � �0M1/4, where �0 is a constant, is the
eigen time scale for organisms.

As impressive as the scaling of physiological time is that of
metabolic rate R, which scales as M3/4 over a very wide range of
body masses, from unicellular organisms to blue whales, R �
R0M3/4, with R0 constant over a tremendous range of M. It is
important to realize that metabolic rate is a measure indepen-
dent of physiological time. Although it is tempting to argue that
all time dependence eventually boils down to the rate of chemical
reactions in the organism and thus metabolic rate, the two time
scales have no relationship, just as the frequency of a radio
transmitter is unrelated to the frequency of its power supply but
is an intrinsic quantity. Only in the hypothetical case that a
mechanistic coupling between metabolic (power generation)
rate and one of the natural periods can be proven will metabolic
rate and physiological time be expressions of the same rate.

For an isothermal system the rate (in clock time) of entropy
production can be taken as given by the metabolic rate. Although
efficiency is often treated in energetic terms, e.g., metabolic rate,
the proper basis for discussion is entropy (see, e.g., refs. 13 and
33), since energy is strictly conserved in any process, whereas
entropy always increases—it yields the ‘‘arrow of time.’’ Ther-
modynamic efficiency based on entropy is also a more general
quantifier than an efficiency based on energy, since the maxi-
mum of the latter depends on the temperature of the system
(through the Carnot efficiency) whereas the maximum entropic
efficiency (also sometimes called effectiveness) is always one.
However, under isothermal conditions, i.e., particularly in the
case of homeotherms, energetic and entropic changes are simply
proportional, so changes in one reflect changes in the other. In
the more general case where work potential (exergy) may be
made useful at several intensities (e.g., heat at different tem-
peratures), the two descriptions are no longer equivalent (34).
Thus, we take entropy as the proper measure of efficiency and
infer that the rate of entropy production scales with M3/4.

Maximum Efficiency
From the scaling of physiological time and that of the rate
of entropy production we see that on the physiological time
scale � (e.g., per heartbeat) the rate of metabolism R or the rate of
entropy production per unit body mass is constant: R��M �
�0M1/4R0M3/4�M � R0�0. This implies in turn that the total (over the
entire lifespan) entropy production per unit body mass is the same
for all species, and that the rate of entropy production per unit body
mass is constant across species on the physiological eigen time scale.
This is nothing but the necessary condition for maximum efficiency
in the sense of minimum entropy production derived by Andresen
and Gordon (24) and Spirkl and Ries (25). Although this is only a
necessary condition, not a sufficient one, it indicates that organisms
do indeed operate at maximum efficiency.

Since metabolic rate increases with body mass at a rate less than
body mass itself, the rate of entropy production per unit body mass
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decreases with increasing mass in clock time; thus the statement
that smaller species are energetically less efficient than larger ones
(23). On the other hand, note that total energy usage over the entire
lifespan of a representative of a particular species is just the product
of metabolic rate and longevity (more correctly the integral of
metabolic rate with respect to time) and is proportional to body
mass (R� � R0�0M). Therefore, total energy usage per unit body
mass over species lifespan is constant, as is the metabolic rate per
unit body mass in physiological time. In this sense, all species are
equally efficient on the physiological eigen time scale. It is only
when observing organisms from the outside that we see increasing
efficiency with increasing body mass.

It is important to keep in mind that the results here do not
require exactly 1�4 power scaling, the origins of which have been
the subject of intensive investigation recently (see, e.g., refs.11
and 35; see also ref. 8). All that is required is that if metabolic
rate scales as M1�� then physiological time must scale as M�. This
ensures that the product of the rate of entropy production and
eigen time is proportional to M; maximum efficiency follows.
Although the evidence for 1�4 power scaling is strong, other
scalings—e.g., the 1�3 power scaling expected on geometrical
grounds—would equally support the result of maximum effi-
ciency derived here, as long as physiological time would be found
to scale appropriately on closer examination.

Note also that if evolution is the omnipotent optimizer that some
would maintain, then it is entire organisms that are maximally
efficient, not particular processes or organ systems. The condition
of maximum efficiency for individual processes or organ systems
might even lead to logical conflicts with current physiological
knowledge. For example, one could reasonably argue that skeletal
muscle should be a maximally efficient mechanical system, but
skeletal muscle is also involved in temperature regulation through
shivering. For muscle to be optimal in the latter role, it should
produce a maximum of heat; i.e., it should be minimally efficient.
Muscle cannot be optimal in both of these senses. However, if the
organism as a whole is maximally efficient, this does not require that
muscle or any other component system is maximally efficient in any
one role. Organismal optimal efficiency can thus circumvent ap-
parent conflicts that may arise when attempting to optimize com-
ponent systems for multiple roles. This would also be consistent
with approaches that apparently explain the allometric scaling laws
without recourse to energetic arguments (6).

Evolutionary theoretical, including life history theoretical (36),
interpretations of these results are best left to specialists in these
fields. Nonetheless, a few points are apparent, even if they may
border on the speculative. The first is that the efficiency optimiza-
tion inferred from the scaling laws may not be unique to living
systems; it is also found in natural physical systems such as rivers (8),
at least as reflected in their structures. Second, as emphasized by
Bejan (8), these same sorts of structures are those that often lead
to optimal efficiency in man-made systems, especially those dealing
with flows. Thus, the allometric scaling laws may be a reflection of
a more universal natural law relating to efficiency, and may not be
unique to systems arising through biological evolution. In fact, the
evolution of man-made and other nonbiological systems seem
similar in this regard (8). Third, from a life-history theoretical point
of view, it would seem reasonable that the efficiency of an organism
is related to its lifespan in such a way that all organisms are equally,
and maximally, efficient, each on its own physiological eigen time
scale. If a cat had the same lower metabolic rate as the longer lived
elephant, it would be hyperefficient; i.e., its rate of entropy pro-
duction would be lower than it could be and still maintain maximal
efficiency. If, on the other hand, the cat would produce entropy at
the faster rate of the smaller shrew, this rate would be too large to
be maximally efficient. Finally, consistent with the last point, there
are indications (31) that growth rate may be adjusted to lifespan in
such a way that, again, the conditions for maximum efficiency in the
sense of total entropy production are met.

Up to now, the question asked most frequently has concerned
the derivation of the allometric scaling laws from a condition of
maximum efficiency. Here we have turned the question around,
and, instead of asking what a principle of maximum efficiency
can tell us about the origins of the universal scaling laws (5, 8),
we have asked what the scaling laws can tell us about efficiency.
We found that each species is equally efficient in physiological
eigen time, and that a necessary condition for maximum effi-
ciency in the sense of minimum entropy production is fulfilled.
Thus biological systems may indeed be maximally efficient—not
in clock time as seen by an outside observer, but in physiological
eigen time, as each species sees itself.
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